If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-4+x=0
a = 1; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·1·(-4)
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{17}}{2*1}=\frac{-1-\sqrt{17}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{17}}{2*1}=\frac{-1+\sqrt{17}}{2} $
| -1.5x+5=2.5-7 | | 6x+4(2x+5)=100 | | 2(x+2)=-4 | | 3k^2+8k-3=0 | | (3k+7)=(8k-2) | | 3/4y=2.2 | | 2-6x=5x-97 | | -4c+15–c=3–7c–12 | | 5^x*2^x=0.01 | | 2t-10=-4 | | 4+5x=x+20/7 | | (5x+3)=(5x-3) | | 5^2*2^x=0.01 | | 2b/3+5=3 | | F(x)=1/(x-3) | | 2b/35=3 | | 6x+5+7x=133/11 | | 900+3x=200+x | | 3y+4y+6-7=-8 | | 7x+20=9x-8 | | (3x+1)=(7x-6) | | 7^(x+3)=49 | | 12(5x+12)=2x−3 | | 2x2+10x=0 | | -8+4x+4/7x=-376/7 | | -12n-8=196 | | 9x+3+x^2=0 | | 5(3x-2)+7(x-3)=35 | | 14t–12t=10 | | 76=2x+5x+6 | | 16=v/5-12 | | -c+1=5c+5 |